Extending Microsystems to Very High Temperatures and Chemically Harsh Environments
نویسنده
چکیده
Khaji, Z. 2016. Extending Microsystems to Very High Temperatures and Chemically Harsh Environments. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1424. 45 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9686-9. Aiming at applications in space exploration as well as for monitoring natural hazards, this thesis focuses on understanding and overcoming the challenges of extending the applicability of microsystems to temperatures above 600°C as well as chemically harsh environments. Alumina and zirconia high-temperature co-fired ceramics (HTCC) with platinum as the conductor material, have in this thesis, been used to manufacture a wide range of high-temperature tolerant miniaturized sensors and actuators, including pressure and flow sensors, valves, a combustor, and liquid monopropellant microthrusters. Interfacing for high temperatures is challenging. One solution is to transfer the signal wirelessly. Here, therefor, wireless pressure sensors have been developed and characterized up to 1000°C. It is usually unwanted that material properties change with temperature, but by using smart designs, such changes can be exploited to sense physical properties as in the gas flow sensor presented, where the temperature-dependent electrical conductivity of zirconia has been utilized. In the same manner, various properties of platinum have been exploited to make temperature sensors, heaters and catalytic beds. By in-situ electroplating metals after sintering, even more capabilities were added, since many metals that do not tolerate HTCC processing can be added for additional functionality. An electroplated copper layer that was oxidized and used as an oxygen source in an alumina combustor intended for burning organic samples prior to sample analysis in a lab on a chip system, and a silver layer used as a catalyst in order to decompose hydrogen peroxide in a microthuster for spacecraft attitude control, are both examples that have been explored here. Ceramics are both high-temperature tolerant and chemically resistant, making them suitable for both thrusters and combustors. The corresponding applications benefit from miniaturization of them in terms of decreased mass, power consumption, integration potential, and reduced sample waste. Integrating many functions using as few materials as possible, is important when it comes to microsystems for harsh environments. This thesis has shown the high potential of co-fired ceramics in manufacturing microsystems for aggressive environments. However, interfacing is yet a major challenge to overcome.
منابع مشابه
review of the mechanical and thermal properties of high temperature Diboride ceramics
Ceramic borides, carbides and nitrides with high melting point, relatively good resistance to oxidation and corrosive environments are considered by many researchers in various high temperature industries, which is known from the family of materials as high temperature ceramic (UHTC). To be. All UHTCs have very strong bonds that give them structural stability at high temperatures, and among the...
متن کاملPrecision in harsh environments
Microsystems are increasingly being applied in harsh and/or inaccessible environments, but many markets expect the same level of functionality for long periods of time. Harsh environments cover areas that can be subjected to high temperature, (bio)-chemical and mechanical disturbances, electromagnetic noise, radiation, or high vacuum. In the field of actuators, the devices must maintain stringe...
متن کاملThe Effect of Micro Silica on Permeability and Chemical Durability of Concrete Used in the Corrosive Environment
Micro silica (MS) is an extremely fine, spherical powder that is used as an additive for improving concrete performance. It is obtained as a by product of silicon metal and ferrosilicon alloy production. Due to its pozzolanic nature, micro silica can be used to enhance the qualities of both fresh and hardened concrete. Addition of micro silica into the concrete as a cement rep...
متن کاملAutonomous Microsystems for Downhole Applications: Design Challenges, Current State, and Initial Test Results
This paper describes two platforms for autonomous sensing microsystems that are intended for deployment in chemically corrosive environments at elevated temperatures and pressures. Following the deployment period, the microsystems are retrieved, recharged, and interrogated wirelessly at close proximity. The first platform is the Michigan Micro Mote for High Temperature (M³HT), a chip stack 2.9 ...
متن کاملSurvey Report of Current Status of High Temperature Micro devices Packaging
Wide band-gap semiconductor materials such silicon carbide (SiC), gallium nitride (GaN), and diamond (C) based electronic devices may operate at temperatures above the high temperature limit of silicon technology. Among these wide band gap materials, single crystal SiC is the most mature material at this stage. SiC has such excellent physical and chemical material properties that SiC microsyste...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016